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Fundamental thermal fluctuations in microspheres
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We present a theoretical analysis and the results of measurements of thermorefractive noise in microcavities.
These measurements may be considered direct observations of fundamental fluctuations of temperature in
solid media. Our experimentally measured noise spectra are in agreement with our theoretical model.
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1. INTRODUCTION
The development of modern technology in many fields has
led to further miniaturization of components. This
makes it necessary to take into account certain funda-
mental physical limitations. An example of such limita-
tions is the thermodynamical fluctuation of temperature
in a small volume. Such fluctuations are transformed
into wideband noise in output channels because of the
temperature dependence of device parameters. The
same limitations also appear frequently in experimental
physics in macroscopic high-precision measurements. As
was recently shown, fundamental fluctuations with the
same origin limit the sensitivity of gravitational wave an-
tennas [such as at the international Laser Interferometer
Gravitational Wave Observatory1 (LIGO)], where thermal
expansion, the thermal dependence of refractive indices,
and Young’s modulus give rise to different types of
noise.2–5 Thermorefractive fluctuations lead to phase
noise in long fibers,6,7 which were used in observation of
the effect for the first reported time.8

Microspheres9 are a relatively novel type of optical
resonator that uniquely combine small size (from tens to
thousands of micrometers) and high quality factor, as
much as Q . 1010 for the so-called whispering-gallery
modes10 (WGMs). The small size of the effective volume
occupied by the electromagnetic (e.m.) field of the mode
makes for low thresholds of nonlinear effects such as bi-
stability and oscillatory instability,11 which are precondi-
tioned by Kerr’s and thermal effects. The small volume
makes it possible for such resonators to be used as tools
for detection and measurement of thermorefractive
noise.12 Apart from its importance in the LIGO project,
the measurement of thermorefractive noise can serve as
an innovative experimental examination of the theory of
microscopic fluctuations of temperature. Thermorefrac-
tive noise should also be taken into account in possible
applications of WGM resonators such as in diode-laser
stabilization.
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2. THERMOREFRACTIVE NOISE IN
MICRORESONATORS
One can understand the effect of thermorefractive noise
from the well-known thermodynamic equation for the
variance of temperature fluctuations u in volume V:

^u2& 5
kT2

rCV
, (1)

where T is the temperature of the heat bath, k is the Bolt-
zmann constant, r is density, and C is specific heat capac-
ity. By substituting Veff . 1029 cm3 in the following pa-
rameters for fused silica: r 5 2.2 g/cm3, C 5 6.7
3 106 erg/( g K), and the effective volume of the field of
the most localized WGM in the microsphere of radius R
; 50 mm, we obtain the value of the standard deviation
of temperature, A^u2& . 30 mK. These temperature fluc-
tuations, combined with the coefficient of thermal refrac-
tion dn/dT 5 1.45 3 1025 K21, lead to the effect of rela-
tive eigenfrequency fluctuations dv/v ; 3 3 10210. The
estimate is comparable with the bandwidth of resonances
that are achievable in microspheres. We do not consider
thermoelastic noise in microspheres, as coefficient of ther-
mal expansion a 5 5.5 3 1027 K21 is sufficiently smaller
than dn/dT in fused silica. In subsequent sections we
present more-rigorous analyses aimed at finding the spec-
tral properties of this noise, taking into account the pecu-
liar field distribution of WGMs.

Variations of refractive index n in the dielectric cavity
perturb the cavity’s resonant frequencies. The perturbed
wave equation has the form

DE 1 ~e0 1 2ndn !
v2

c2
E 5 0, (2)

where E is the electric field strength in the cavity, e0

5 n2 is permittivity, and dn 5 (dn/dT)u is the variation
of refractive index that is due to fluctuations of tempera-
ture u. If E0 is the orthonormalized field distribution of
2004 Optical Society of America
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an eigenmode of the unperturbed cavity (* Ei • Ej* dr
5 d ij) and v 5 v0 1 dv is the frequency shift, then after
multiplication of this vector equation by complex conju-
gated vector E0* and integration over the whole volume
and neglecting second-order terms, we obtain

dv

v0
5 2

1

n
E

V
uE0

2udndr 5 2
1

n

dn

dT
ū, (3)

where ū is the temperature deviation averaged over the
mode volume.

3. POWER SPECTRAL DENSITY OF
THERMAL FLUCTUATIONS
To calculate the effect of fluctuations of temperature, one
may use the method of fluctuational thermal sources
F(r, t) (Refs. 2 and 3):

]u

]t
2 DDu 5 F~r, t !, (4)

where D 5 l* /(rC) is thermal diffusivity and l* is ther-
mal conductivity (l* 5 1.4 3 105 erg/(cm s K) and D
5 9.5 3 1023 cm2/s for fused silica). This approach is
analogous to the Langevin approach, which uses fluctua-
tional forces in the equations of dynamics. It was shown
before2,3 that, if the sources are properly normalized,

Brt
F 5 ^F~r, t !F~r8, t8!&

5
2kT2D

rC
Dd ~r 2 r8!d ~t 2 t8!, (5)

this approach will lead to the correct results, which will
satisfy the fluctuation-dissipation theorem. In particu-
lar, it was shown that thermoelastic noise is associated
through the fluctuation-dissipation theorem with ther-
moelastic damping. It is also possible to show that ther-
morefractive noise is connected through the fluctuation-
dissipation theorem with electrocaloric losses.13

Thermodynamic fluctuations of temperature, averaged
over the mode volume, may be calculated as

ū 5 E u~r, t !uE0~r!u2dr, (6)

where * uE0u2dr 5 1 and

u~r, t ! 5 E F~q, V!

Dq2 1 iV
exp~iVt 1 iq – r!

dVdq

~2p!4
(7)

is the general solution of Eq. (4), where q is a vector in
Fourier space. Spectral correlations of fluctuational
forces satisfy the following condition:

BqV
F 5 ^F~q8, V8!F* ~q, V!&

5 ~2p!4
2kT2D

rC
q2d ~q 2 q8!d ~V 2 V8!. (8)

We may now calculate the following average value:
Bt

u 5 ^ū(t)ū(t 1 t)& (the correlation function of tem-
perature fluctuations averaged over the mode volume)
and so, from the Wiener–Hinchin theorem, the one-sided
(hence additional factor of 2) power spectral density
Sū(V) of fluctuations of temperature:

Sū~V! 5
4kT2D

rC
EEE q2uE0~r!u2uE0~r8!u2

D2q4 1 V2

3 exp@iq – ~r 2 r8!#drdr8
dq

~2p!3

5
4kT2D

rC
E q2uG~q!u2

D2q4 1 V2

dq

~2p!3
, (9)

where

G~q! 5 E uE0u2 exp~2iq – r!dr (10)

is the normalized spatial spectrum of the energy distribu-
tion in the resonator. To verify this useful expression we
may integrate it over all frequencies:

^u2& 5 E
0

`

Sū~V!
dV

2p
5

kT2

rC
E uG~q!u2

dq

~2p!3
. (11)

Comparing the final expression with Eq. (1), we deduce
that

Veff
21 5 E uG~q!u2

dq

~2p!3
5 E uE~r!u4dr. (12)

The same general expression for the effective volume of
the mode in the microresonator appears in the analysis of
nonlinearity11 and scattering14 in microspheres.

It is important to note that we obtained the above ex-
pressions by ignoring boundary conditions. If the field is
concentrated near a thermally isolated surface, as it is for
microspheres, Eq. (8) should be modified by substitution
of @d (q' 2 q'8) 1 d (q' 1 q'8)#d (qi 2 qi8) for d (q
2 q8), where q' is the component of the wave vector of

fluctuations normal to the surface and qi are components
that are parallel to it.

In the analysis above, the medium was considered infi-
nite (the volume of field localization is significantly
smaller than the size of a device). A discrete spectrum of
thermal waves should be considered for more-accurate
calculations, especially at low frequencies:

F~r, t ! 5 E ( Fn~V!Fn~r!exp~iVt !
dV

2p
. (13)

Now, as before, we may calculate the correlation func-
tion of relative frequency fluctuations and power spectral
density:

Sū~V! 5
4kT2D

rC (
n

qn
2uGnu2

D2qn
4 1 V2

, (14)

where Gn are the coefficients of field’s intensity decompo-
sition into normal thermal waves Fn(r) of the finite me-
dium.

Applying the expressions obtained to the microsphere
leads to the following expression for the power spectral
density of relative frequency fluctuations:
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Sdv/v~V! 5 SūS dn
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, (15)

where l, m, b, d, and tb are parameters that are deter-
mined by the mode in the microsphere (see Appendix A).
This equation was experimentally verified in the study re-
ported here.

It is essential to note that, in a finite body, Sū(V), un-
like in Eq. (15), remains limited at zero frequency. How-
ever, instead of the sum in expression (A15) below, we
used Eq. (15), obtained from the continuous spectrum, to
evaluate the results of the measurements. There were
important reasons for doing this. First, we used too
many approximations when we were obtaining the sum.
These are crude approximations, especially for lower fre-
quencies. However, it is shown in Appendix A and con-
firmed by numerical calculations that the sum in expres-
sion (A15) and the integral in expression (A5) lead to the
same asymptotic dependence at high frequencies. Sec-
ond, microspheres during fabrication are formed on short
fused-silica stems, which conduct heat and couple micro-
spheres to heat baths. The thermal exchange with the
atmosphere owing to convection is also not negligible.
Therefore microspheres are not thermally isolated.
Third, other parasitic noise effects dominate at low fre-
quencies. Throughout the experiment we considered this
phenomenon only at frequencies V . 1/tR 5 D/R2

; 400c21 for (R 5 50 mm).

4. EXPERIMENTAL SETUP
The idea of measuring thermorefractive noise in optical
microspheres is quite simple (see Fig. 1). If one tunes the
measuring laser’s frequency to the slope of the resonance
curve of a WGM, that is, to the range where the ampli-
tude of the signal being measured depends strongly on
frequency, then the trembling of the resonator’s eigenfre-
quency is transformed into fluctuations of the intensity of
the output radiation. These intensity fluctuations are
then recorded and further processed.

Fig. 1. Schematic of the experimental setup for measurement of
noise spectra in microspheres: ADC, analog-to-digital converter.
To measure thermorefractive noise we used small 2R
. 80–260 mm fused-silica microspheres with optical
quality factors Q . 109 manufactured with a hydrogen
miniburner. To prevent degradation of the Q factor ow-
ing to adsorption of atmospheric water10 we placed micro-
spheres after fabrication in an atmosphere of dry, clean
nitrogen into a special chamber where all measurements
were conducted.

WGMs in microspheres were excited with a prism cou-
pler by use of a He–Ne laser (wavelength, l 5 0.63 mm)
with a piezo-driven front mirror, as described in Ref. 15.
The laser frequency could be tuned within a range of ap-
proximately 0.8 GHz. The output power of the laser (540
mW) was reduced to 45 mW when the laser passed into the
chamber. The reduction of power was necessary to
weaken thermal and Kerr nonlinearities11 and was car-
ried out with neutral-density filters. The frequency of
the laser was locked at the slope of the resonance curve.
This was done with a miniature spiral heater placed near
the resonator, which actively stabilized the temperature
of the microsphere, hence stabilizing the microsphere’s
eigenfrequency. To provide the feedback loop we used a
weak signal at 91.2 kHz to modulate the laser frequency.
This frequency was chosen to coincide with one of the
acoustic resonances of the front mirror to facilitate laser
frequency modulation. This signal was demodulated by
the WGM, and an error signal was used to correct the cur-
rent that feeds the heater. The thermal response time
for this locking scheme was estimated to be 4–10 ms.
When the WGM is locked to the laser, the output of the
microsphere is the thermorefractive amplitude noise.
The output from the resonator was registered by a Thor-
labs PDA500 amplified GaAsP photodetector with 40-dB
gain in amplitude and fd 5 45 kHz bandwidth at this
gain setting.

The signal from detector was digitized with an analog-
to-digital converter (ICP DAS PCI-1802L computer board)
with a digitization speed of 333 ksamples/s and a sample
resolution of 12 bits/s. Continuous sets of 6,553,600
(19.66-s) points were recorded in each measurement ses-
sion for further processing. To estimate the noise fre-
quency spectrum we subdivided the record into many
equal time intervals. Power spectral densities were cal-
culated with a fast Fourier transform algorithm for each
interval and then averaged over the entire set of intervals
within each session. We used 100 intervals with 65,536
5 216 points in each interval to produce an estimate of
spectra with a fine resolution of '5 Hz. To prevent the
known effect of frequency aliasing that is caused by the
finite sampling rate, the frequency band of the signal in-
coming from the detector was limited by a Butterworth
filter of eighth order. At a stop-band frequency of 166
kHz (the Nyquist frequency in our case) this filter attenu-
ates the signal to 248 dB. A first-order RC-filter with a
time constant of t . 2 s was used to get rid of the con-
stant offset.

A. Calibration of Spectra
To obtain absolute values of spectral densities for mea-
sured spectra we have developed and used a method of
calibration based on laser frequency modulation. In this
method, a weak sinusoidal voltage of known amplitude
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and frequency is admixed with the output of the piezo ac-
tuator of a laser’s mirror, thereby producing weak laser
frequency modulation. Because the measured spectra
represent relative frequency fluctuation, this additional
sinusoidal modulation of laser frequency results in a nar-
row peak in the frequency spectrum. If the amplitude of
the frequency modulation is known, it is possible to find
the value of spectral density that corresponds to the spike
in the spectrum of relative frequency fluctuations, i.e., in
the thermorefractive noise spectrum.

To find the coefficient of transformation of voltage to la-
ser frequency modulation and to measure the optical
quality factors of the resonators, we calibrated the piezo
actuator by using following technique:

The laser radiation that we used to excite the WGMs
was phase modulated at a frequency that was higher than
the half-width at half-maximum frequency of the modes,
which added the frequency sidebands to the laser radia-
tion. The frequency of the laser was modulated addition-
ally by the sawtoothed voltage that provided frequency
scanning and allowed us to observe the sidebands and the
carrier on the oscilloscope. Two sidebands and the car-
rier could be observed because they excited the micro-
sphere as the laser frequency was scanned.

These sidebands produce frequency scale for calibra-
tion of the piezo actuator and for measurement of the Q
factor from the widths of resonant curves. The coeffi-
cient of the piezo actuator was ]f/]v 5 (3.63
6 0.1) @MHz/V#.

If the amplitude of frequency modulation produced by
the piezo actuator is known, the amplitude of the peak
that it produces in the calculated power spectral density
can be used for the absolute calibration of the spectral
density of thermorefractive noise (see Appendix B).

To produce a calibration peak we applied 5–15-mV
modulation at 172.9 or 1002 Hz (preferred frequency at
later stages of experiment) to the piezo actuator of a laser
mirror, which resulted in a relative frequency modulation
of P 5 dv/v 5 (4 –11) 3 10211. These frequencies were
chosen to match those of bins of discrete Fourier trans-
forms of 65,536 points (namely, 1001.99 5 197Fs/65,536
and 172.93 5 34Fs/65,536). The higher frequency of 1
kHz was chosen such that the calibration peak was sepa-
rated from low-frequency setup noises in the frequency
spectrum. It is important to note that the calibration
method described does not require knowledge of the qual-
ity factor of the microsphere as well as of the transforma-
tion coefficients and gains in electrical tracts.

After the amplitude calibration was performed, we
made an additional correction to compensate for fre-
quency filters in the detector by dividing the resultant
spectrum by 1/@1 1 ( f/fd)2#1/2, the frequency response of
the detector. The frequency response of an antialiasing
filter was also compensated for. To do this, we measured
and approximated it with a polynomial of seventh order
so the compensation procedure could be carried out by
point-to-point multiplication.

B. Background Noises in the Measurements
In this research the background noises were represented
by the electrical interference (generally 50 Hz and har-
monics), acoustic and seismic noises, electromagnetic in-
duction noises of devices, and also amplitude and fre-
quency noises inherited from the laser. The frequency
noise of the laser turned out to be the most essential in-
fluence on the quantity being investigated. We measured
this noise together with all other technical noises of the
setup. We used the same technique as for measurements
of thermorefractive noise measurements; the only differ-
ence was that now relatively larger microspheres with di-
ameters of 481, 570, 508, 588, 894, and 619 mm and
modes with larger l 2 m numbers of the order of 100 and
above were used. In these modes, thermorefractive noise
appears to be small enough for laser noise to dominate.
Measurements of the laser noise for all the aforemen-
tioned microspheres coincided well enough. The micro-
spheres operated as the frequency discriminators in this
case.

Calibration of laser noise was carried out in the same
way as was done for thermorefractive noise calibration:
with the use of a calibrating peak. In measurements of
the technical noise spectra a calibrating spike at a fre-
quency of 172 Hz was used.

Special measures were undertaken to weaken electro-
magnetic hindrances in the setup. We applied appropri-
ate signal shielding; moreover, we shielded the analog-to-
digital conversion board inside the computer, which
resulted in a decrease in the setup noise of more than an
order of magnitude. The dynamic range of the digitiza-
tion system exceeded 90 dB (with averaging over many
spectra into account).

C. Identification of WGMs and Computer Processing
On completion of recording we proceeded to identify the
WGM indices. Knowledge of the modes’ indices allows
one to calculate the effective volume occupied by the elec-
tromagnetic field of the mode, as well as the theoretical
energy distribution within the volume and therefore the
theoretical spectral density. To perform the identifica-
tion we used a digital camera to record the speckled im-
age of the mode. (See Fig. 2 as an example of such an
image). The speckled image was called forth by scatter-
ing of the mode’s e.m. field at the residual molecular in-
homogeneities on the surface of the microsphere.10 The
approximation formulas were derived to link the micro-
sphere’s radius with index l and the angular half-width of
the WGM’s belt with l and l 2 m (see Appendix C).

On being recorded, the images were magnified and pro-
cessed with a custom-made computer program for graphic
identification of the WGMs. The belt’s width (l 2 m
value), simulating the sphere size, the slope, and tilt of
the belt, could be controlled interactively, so the theoreti-
cal framework projection of the mode could be made to co-
incide with the photographic projection of the real mode.
This allowed us to obtain the parameters of the mode.
The error in the estimate of the l 2 m value is propor-
tional to (l 2 m 1 1/2)1/2 i.e., the width of the mode belt,
but is strongly influenced by the quality of the pictures
obtained. Modes with l 2 m < 3 can usually be pre-
cisely recognized, whereas for 3 , l 2 m , 6 the error in
obtaining the indices approaches 1. Index q of the mode
can in principle be found from the optimal coupling angle
of incidence of the pump beam.10 However, we did not at-
tempt to do this in the present research. We merely tried
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to excite and analyze the modes with smaller q indices,
which are usually characterized by higher Q and better
coupling.

5. THERMOREFRACTIVE NOISE SPECTRA
Figure 3 presents a typical-high resolution spectrum of
measured noise in a microsphere 138 mm in diameter and
the spectrum of technical noise in a large 894-mm sphere
measured as described in Appendix B. The black curve
over the experimental curve is a theoretical curve for the
spectrum calculated from the recognized value of l 2 m
5 4 6 1. Good agreement of experimental data with

theory for frequencies of .100 Hz is clearly observable.
It can also be seen that the level of combined technical
noises, which include frequency and power fluctuations of
the laser and electrical noises in circuits, is nearly 20 dB
lower than the observed effect, except for isolated spikes.
Therefore technical noises do not prevent experimental
testing of a thermorefractive model.

Fig. 2. Resonator of 570-mm diameter with l 2 m . 13 modes
(magnification 883) visible as a result of surface scattering on re-
sidual inhomogeneities. At the right is a reflection of the micro-
sphere in the coupling prism.

Fig. 3. Thermorefractive noise in a microsphere (138 6 8) mm
in diameter; l 2 m 5 4. Lower curve, setup and laser noise,
measured in a large, 894-mm sphere. The straight line is a the-
oretical estimate.
Calibrating spikes at 1002 Hz for the smaller sphere
and at 172.93 Hz for the larger sphere can be seen in the
figure. At low frequencies, peaks of technical noise at ac,
50 Hz-harmonics dominate. Additional sharp spikes can
be seen at frequencies of the order of 20 kHz, which were
identified as acoustical resonances of laser mirrors re-
sponding to acoustical noise produced by laboratory
equipment. One of these resonances, at 92 kHz, was
used in a feedback loop for active mode frequency stabili-
zation (see Appendix A). These spikes, except the spe-
cially excited one at 92 kHz, are relatively small and nar-
row (;20 Hz) and could be seen only because of the high
resolution of our measurements (;5 Hz in a range of
10–105 Hz). They do not affect the result, especially if
additional averaging at high frequencies is applied. Fig-
ure 4 depicts results of measurement of calibrated spectra
of relative frequency fluctuations in four microspheres for
six modes. The sizes of the microspheres and the esti-
mated mode parameters are given in the figure.

Data for these graphics were obtained from the data
presented in Fig. 3 by use of uniform averaging on a log
scale according to the following algorithm: If
fmin( fmax /fmin)j/N , fi , fmin( fmax /fmin)( j11)/N, then, if nj
. 0, fj 5 (1/nj)( fi ; Sj 5 (1/nj)( Si , where N is the
number of equidistant bins (N 5 200 for the figure
shown) on a log scale, nj is the number of points found in
bin j 5 0... N 2 1, fmin 5 10 Hz, and fmax 5 105 Hz. This
approach allows one to estimate better the real spectra in
higher frequencies while preserving frequency resolution
at low frequencies. To make the figure less bulky, we
digitally filtered out calibration peaks during processing.

6. DISCUSSION
We conclude that the results of measurements of fre-
quency noises in microspheres confirm the theoretical
model of thermorefractive fluctuations. This is true for
both frequency dependence and dependence on mode pa-
rameters l and l 2 m. The discrepancy is less than 30%
in the frequency range 3 3 102 –105 Hz (V . 1/tR),
where the model and the approximations used are valid
and are free of installation noises. For frequencies above
1 kHz the differences are within the limits of calibration

Fig. 4. Thermorefractive noise in four microspheres for six dif-
ferent modes. Dotted lines, theoretical curves obtained for rec-
ognized modes’ parameters. Larger noise corresponds to
smaller sizes of microspheres and smaller l 2 m values.
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error and WGM identification error. Such close agree-
ment was obtained in many resonators of average size,
120–250 mm in diameter. In very small resonators, at
frequencies lower than 1 kHz, the noise was as much as
two times greater and the dependence on frequency was
more pronounced. In large resonators at lower frequen-
cies the noise seemed to be smaller. However, as was
noted, the theoretical model described below may be not
valid when the frequency of noise is comparable to the in-
verted time of temperature relaxation of the whole micro-
sphere via the microsphere stem (Rs ; 20 mm). The in-
fluence of the stem for smaller spheres in the ratio Rs /R
is larger. This result looks to be compatible with the ob-
served systematic deviations at low frequencies of experi-
mental curves from the theoretical curves obtained for
thermally nonisolated spheres. Other kinds of thermal
noise, such as thermoelastic2 noise and thermal fluctua-
tions of effective eccentricity of microspheres that lead to
additional frequency fluctuations proportional to l 2 m,
can also contribute to the effect. Additionally, there are
other influential mechanisms such as convective thermal
relaxation and the influence of a WGM locking scheme,
that can modify spectra.

It is worth noting that from the displayed spectra it is
possible to calculate the spectra of microscopic fluctua-
tions of temperature in the volume occupied by the e.m.
field of a WGM. Using the known relation

dv

v
5 2

1

n

dn

dT
u, (16)

one can rescale the spectra to a factor of 1/@(1/n)
3 (]n/]T)# 5 105 K for fused silica. For instance, the
mode of the 138-mm resonator has an effective volume of
the order of 4, 3 3 1029 cm3, which is 4 orders of magni-
tude smaller than in former measurements of thermally
induced phase noise in long fibers.8

APPENDIX A: CALCULATION OF
THERMOREFRACTIVE NOISE IN
MICROSPHERES
To simplify the analysis we perform the calculations be-
low only for the fundamental WGM TEll1 , which has the
smallest volume of localization. The result in principle
may be extended to account for TElmq modes with q, l
2 m ; 1. The field distribution of this mode may be ap-
proximated as follows:

E~r, u, f ! . Eu~r, u, f !
nl1/4

An2 2 1R3/2p3/4

. iu exp~2l cos2 u/2 1 ilf !

3 H jl~knr !/jl~knR ! r < R

exp@2g ~r 2 R !# r . R
,

knR . l 1 1/2 1 1.8558~l 1 1/2!1/3

2
n

An2 2 1
, (A1)
where k 5 2p/l is a wave number in vacuum. However,
even this approximation is too complex for analytical
evaluation, so below we shall use the following Gaussian
approximation of radial dependence:

êu~r, u, f ! .
1

pA2bdR0

3 expF2
~r 2 R0!2

2b2
2

r2 cos2 u

2d2
1 ilfG ,

knR0 . l 1 1/2 1 0.71~l 1 1/2!1/3,

d . R0l21/2,

b .
1

kn F jl~knR0!

jl9~knR0!
G1/2

. 0.84R0l22/3.

(A2)

This approximation describes rather adequately the dis-
tribution of optical energy inside the resonator and allows
one to calculate Fourier integrals. Moreover, as will be
seen below, because of the small depth of the field (param-
eter b), radial distribution has practically no influence on
the frequency fluctuations at frequencies of interest:

uG~q!u 5 U 1

2p2bdR0
E

0

RE
0

2pE
0

p

expF 2
r2 cos2 u

d2

2
~r 2 R0!2

b2 Gexp$iqr@cos u cos q

1 sin u sin q cos~f 2 w!#%sin ududfr2drU
. expF2

~qd cos q!2

4 GexpF2
~qb sin u!2

4 G
3 S 1

pqR0 sin q
D 1/2

. (A3)

To obtain this result we used several approximations
while we calculated the integrals. We made the first in-
tegration over angle u, taking into account that the mode
distribution is narrow and hence that sin(u) . 1. The
second integral, over f, led to a Bessel function of the first
order, which was approximated as a spherical wave. Fi-
nally, we found the integral over r, considering only fast-
varying functions. We also used other physical condi-
tions to enable us to neglect small terms: (R 2 R0)
! R, j(knR) ! j(knR0), and cos(qR) . 1 that are due to
boundary conditions for thermal waves. For q → 0 the
last term in expression (A3) should be equal to 1 and the
final expression is incorrect because of approximations
used for J0 . However, this case is not interesting for us.
To correct the situation and to obtain a better approxima-
tion one may formally add 1 to the denominator.

Using Eq. (9) and keeping in mind the additional factor
of 2 that is due to boundary conditions, we obtain
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Sū 5
8kT2D

rC
E q2uG~q!u2

a4q4 1 V2

dq

~2p!3

.
2kT2D

rCp3R
E

0

`E
0

p

expF2
~qd cos q!2

2 G
3 expF2

~qb sin u!2

2 G q3dqdq

D2q4 1 V2
,

lim
x→`

E
0

p

exp@2x2 cos2~q!#dq .
Ap

x
, (A4)

Sdv/v~V! .
kT2D

p5/2n2rCR

2

Ad2 2 b2
S dn

dT D 2

3 E
0

` q2 exp~2q2b2/2!

D2q4 1 V2

dq

2p
, (A5)

E
0

` q2 exp~2q2b2/2!

D2q4 1 V2

dq

2p

.
A2

4D3/2AV

1

~1 1 ~Vtb!3/4!2
. (A6)

This integral can be expressed through special Lommel
functions; however, an approximation is used here, which
works well for Vtb , 1, where tb 5 (p/4)1/3b2/D. In-
deed, neglecting the first term in the denominator, we ob-
tain a high-frequency approximation with dependence
V22, and, neglecting the exponential approximation for
lower frequencies, we obtain the dependence on V21/2.

Finally,

Sdv/v~V! 5 S dn

dT D 2 kT2Al

p3/2n2R2Al* rCV

3
1

~1 2 b2/d2!1/2

1

@1 1 ~Vtb!3/4#2
. (A7)

Numerical analysis, which is omitted here, shows that,
for the modes with l Þ m, the power spectral density of
the fluctuations is proportional to @2(l 2 m) 1 1#1/2.
This dependence is also confirmed by the fact that the azi-
muthal widths of the modes, and hence their effective vol-
ume, have the same dependence.

To account for the finite sizes of microspheres, one
should perform calculations with Eq. (14). As at room
temperature the power radiated from the surface
(Stephan–Boltzmann law) is much lower than the heat
exchange that is to thermal conductivity (Fourier law),
the following simplified boundary condition is used:

]u~r, u, f, t !

]r
U

r5R

5 0, (A8)
FL,M,N 5 CL,M,NjL~qLNr !PL
M~cos u!

3H cos~Mf !

sin~Mf !
, (A9)

CL,M,N
2 5

2L 1 1

p~1 1 d0M!

~L 2 M !!

~L 1 M !!

3
jL,N

2

R3@jLN
2 2 L~L 1 1 !#jL

2~jLN!
,

(A10)

GL,N 5
CL,0,N

pbdR0
E E expF2

~r 2 R0!2

b2

2
r2 cos2 u

d2 G jL~qLNr !

3 PL~cos u!r2dr sin udu. (A11)

Although only functions with M 5 0 lead to nonzero inte-
grals, it is appropriate to note that functions with M
5 2l can also be taken into account: They lead to the
coupling between counterpropagating modes in the
sphere and to mode splitting.

To estimate this integral for small values of cos u . c
5 u 2 p/2 near the equator of a microsphere, where the
e.m. field is concentrated, one may use the following ap-
proximation for the Legendre polynomial L
. 0 @P0(cos u) 5 1#:

PL~cos u! . A 2

pL S 1 2
1

4L D cosF S L 1
1

2 Dc 1
Lp

2 G ,

(A12)

and, for the spherical Bessel functions:

jL~z ! 5
1

z
sin~z 2 Lp/2!,

jLN 5 qLNR .
p~2N 1 L 2 1 !

2
,

jL~jLN! .
~21 !N21

jLN
, L 5 2K.

(A13)

It is the crudeness of the approximation for the roots of
the derivatives of spherical Bessel functions that limits
the applicability of the final sum that we obtain below.
In this way, the calculations below may be considered to
be only illustrations:

uGL,Nu2 .
2R~L, N !

p2R3
expF2

~L 1 1/2!2d2

2R0
2

2
jLN

2b2

2R0
2 G ;

R~L, N ! 5
~1 2 1/4L !2~1 1 1/2L !

1 2 L~L 1 1 !/jLN
2

, L . 0,

R~0, N ! 5 p/4. (A14)

To calculate these coefficients we used the approximation
qLN(R 2 R0) ! 1. And, finally,
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Sū~V! .
8kT2

p2rDCR
(
K50

`

(
N51

`
jLN

2 exp$2@~L 1 1/2!2d2/2R0
2# 2 ~jLN

2b2/2R0
2!%

jLN
4 1 ~V2R4/D2!

R~L, N !. (A15)
To calculate the sums in a high-frequency approxima-
tion we can consider R(L, N) 5 1. By making the fol-
lowing substitutions: x 5 (K 1 N)/A2, y 5 (K
2 N)/A2, and tR 5 R2/D, we use integrals instead of
sums:

Su .
8kT2

p2rCDR
E

0

`E
2x

x 2p2x2

4p4x4 1 V2tR
2

3 exp~2p2x2b2/R2!exp@2~x 1 y !2/l#dydx

.
8kT2

p2rCDR
A l

8p
E

0

` t2

t4 1 V2tR
2

3 exp@2t2b2/~2R2!#erfS A2t

pAl
D dt. (A16)

This integral coincides with expression (A5) obtained for
infinite media if the error function, which is practically
equal to unity for t . 1/Al, is ignored. However, spectral
densities described by integral (A5) and sum (A15) are
different at frequencies for V , 1/tR , where expression
(A15) is finite for V → 0 (the term with two sums is close
to unity).

APPENDIX B: RELATION BETWEEN THE
REGULAR CALIBRATION SIGNAL
AND THE NOISE SPECTRUM
To find the link between the amplitude of the harmonic
frequency change and the corresponding peak in calcu-
lated spectral density and noise spectral density, we con-
sider the Fourier transform for regular and chaotic pro-
cesses. Let x(t) denote a chaotic process with a
correlation function

B~t! 5 ^x~t !x~t 1 t!& 5 E
2`

`

S6~V!exp~iVt!
dV

2p
,

(B1)

where S6(V) stands for double-sided spectral density,
which is symmetrical and two times less for positive fre-
quencies than the one-sided S(V). Let T denote the
length of the window, W(t), in the time domain, that is,
the duration of a set $x(t)% (or $xi% in the discrete case) for
which the Fourier transform is carried out. Now we con-
sider the transform with square window w(t) 5 1 for t
P @2T/2, T/2#. The Fourier transform for x(t) is

Xj 5 E
2T/2

T/2

W~t !x~t !exp~2iV jt !dt, V j 5
2pj

T
.

(B2)

In the procedure of spectrum estimation the spectra
Xj(V) are calculated for small intervals of data and then
averaged, which in our notation corresponds to calcula-
tion of the quantity ^uXju2&:
^uXju2& 5 E
2T/2

T/2

^x~t !x~t8!&exp@iv j~t 2 t8!#dtdt8

5 E
2`

`

S~v!
4 sin2@~v j 2 v!~T/2!#

~v j 2 v!2

dv

2p
. (B3)

Calibrating the peak in our case corresponds to frequency
v j @ T21. Then the core in the latter integral in Eq.
(B3) has a sharp maximum at v 5 v j and ^uXju2&
5 TS(v j).

Now let y(t) 5 Y0 cos(Vt) represent a regular harmonic
signal. The Fourier transform for such signal for a
square window will look like

Ys 5 E
2T/2

T/2

Y0 cos~Vt !exp~2iV jt !dt, (B4)

leading to Ysj 5 Y0T/2. Now we compare the results of
the spectrum estimation procedure [Eq. (B3)] and the re-
sults of the Fourier transform for the harmonic signal:

Ysj
2 5

Y0
2T2

4
⇔ TS6~v j! 5 ^uXjus

2&.

Here one can easily see the link between the amplitude of
the harmonic signal and the corresponding peak in spec-
tral density. If the harmonic signal has the dimension of
frequency and the desired spectral density represents
relative frequency changes, then the final relation, corre-
sponding to the one-sided spectral density of the calibra-
tion spike with a square window in Fourier transform,
will be

ASdf/f ⇔
Y0

f0
AT

2 F 1

AHz
G , (B5)

where f0 is optical frequency. The same calculations for
the Hann window give

ASdf/f ⇔
Y0

f0
AT

3 F 1

AHz
G . (B6)

APPENDIX C: FORMULAS FOR THE
IDENTIFICATION OF WGMs
To identify the parameters of WGMs from photographs we
used the following approximation for the half-width of a
WGM belt:

Du 5 @2~l 1 1/2 2 m !/l#1/2. (C1)
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To calculate index l from the radius of a microsphere we
found by numerical approximation the following approxi-
mate formulas that are valid for R @ l:

q 5 1: l 5 20.5 1 tlq 2 2.287tlq
1/3 1 0.1718tlq

21/3,

q 5 2: l 5 20.5 1 tlq 2 4.617tlq
1/3 1 0.6944tlq

21/3,

q 5 3: l 5 20.5 1 tlq 2 6.895tlq
1/3 1 1.518tlq

21/3,

q 5 4: l 5 20.5 1 tlq 2 9.190tlq
1/3 1 2.632tlq

21/3,
(C2)

where

tlq 5
2pniR

l lmq
1

pni

Ani
2 2 1

. (C3)

These formulas allow an estimate of values of l and l
2 m to be obtained from the radius of the microsphere
and the width of the belt of the mode that appears as a
result of residual surface scattering.
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